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ABSTRACT 

The use of the resonant cavity method for measuring electron densities and collision 
frequencies in the ionized wakes of hypervelocity pellets is described- The equiva- 
lent circuit obtained from a normal mode analysis of the cavity fields and their inter- 
action with the wake plasma is used to determine the plasma parameters in terms of 
measurable properties of the cavity. The range ofvalidity of the method is discussed, 
along with a sensitivity and accuracy analysis. 

LEXINGTON MASSACHUSETTS 

Unclassified 

.•.■■..■..■■  ■ ■ . -.•'■..■ . .... 



DEFINITIONS OF SYMBOLS 

Symbol 

B. 

e 

E 

Ea 

Ei 

E, 

Defined in 
Connection 

with Equation 
Number 

(1) 

(1M10),(12). 
(13b) 

(1),(2).(5) 

(30) 

(1) 

(1) 

(35) 

(1) 

(43) 

(1) 

(1) 

Ge 
(1) ,(10), (12) 

(13a) 

Gg = l/Rg 
(1) 

GL = Gc + Gd + Gg (14) 

J = ^T 

J (1) 

Jo'Jl 
(3) 

J^oi) = 0.2695 (3) 

k 

i (33) 

L (2) 

Cavity susceptance referred to cavity end 
plates 

Plasma susceptance referred to cavity 
end plates 

Velocity of light in free space, 
2.9979 X 108 meters/second 

Effective cavity capacitance referred to 
end plates 

Series end-effect capacitance referred to 
cavity end plates 

Electron charge,  1.602 x 10'19 coulomb 

Electric field in cavity 

Unperturbed electric field in cavity 

Internal field of spheroid 

Electric field in center of cavity 

Fractional energy loss of electron in 
collision 

Intrinsic ohmic loss conductance of cavity 
referred to end plates 

Detector conductance referred to cavity 
end plates 

Plasma conductance referred to cavity end 
plates 

Generator conductance referred to cavity 
end plates 

Imaginary operator 

Plasma conduction current density 

Zero- and first-order Bessel functions 

Boltzmann's constant, 
1.38 X lO-23 joule/degree 

Depolarizing factor 

Effective cavity inductance referred to 
end plates 
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I 

I 

Defined in 
Connection 

with Equation 
Symbol Number 

m 

M 

n 

N 

Nmax 

Nmin 

P. 
i 

% = woCc/Gc 

Qd = WoCc/Gd 

Q
g = "oCc/G

g 

«L = woCc/GL 

r 

R
g 

S = iv/vj 
Td 

aE 

n 

o 

-31 
Electron mass, 9.108 X 10       kilogram 

(43) Molecule mass 

(11) Electron volume density 

(12) Electron line density 

(51) Maximum detectable electron line density 

(48) Minimum detectable electron line density 

(44) Incident power from signal generator 

(7) Unloaded Q of cavity 

(9) External Q of detector output 

(8) External Q of generator "output" 

(14) Total loaded Q of cavity 

(3) Radial coordinate in cavity 

(1) Generator impedance (resistance) referred 
to cavity end plates 

(16a, b) 

(45) Detector noise temperature 

Au (43) Increase of electron energy due to balance 
between field heating and collision cooling 

Au-, (43) Change of electron energy per collision 
due to electric field 

Au (43) Change of electron energy per collision due 
c to molecule recoil and excitation 

U (3) Energy stored in cavity 

v (1) Cavity volume 
c 

V (1) Cavity output voltage referred to end plates 

V (1) Generator emf referred to cavity end plates 
g 

V (45) Receiver noise voltage referred to cavity 
end plates 

V (15) V in absence of plasma, equal to Thevenin 
equivalent generator emf 

Y   = G   + jB (1) Intrinsic admittance of cavity referred to 
c        c end plates 



Symbol 

'chg 

Ye = Ge + JBe 

g 

Zch 

a = 2.405 

ö 

e 

£ 

e 

K 

\ 

Defined in 
Connection 

with Equation 
Number 

(1) 

(1),(10),(12) 

(36) 

(1) 

(39) 

(3) 

(30) 

(37) 

(33) 

(17) 

(23) 

(29b) 

(11) 

(3) 

(12) 

(30) 

(U) 

(U) 

(U) 

(45) 

(i) 

(1) 

(26) 

Characteristic admittance of generator 
output referred to cavity end plates 

Plasma admittance referred to cavity end 
plates 

Admittance of plasma conductance in series 
with end-effect capacitance 

Cavity input admittance referred to end 
plates 

Characteristic impedance of slow-wave line 

Argument at first zero of Bessel function of 
zero order 

Length of cavity 

Length of coaxial capacitance 

Naperian logarithm base, 2.718.. . 

Electric permittivity of free space, 
8.85X10-12 farad/meter 

Spheroid eccentricity 

Phase angle of V relative to that of Vo 

Effective dielectric coefficient of plasma 

Free-space wavelength 

Magnetic permeability of free space, 
4ir X 10-7 henry/meter 

Electron-molecule collision frequency for 
momentum transfer 

Cavity radius 

Plasma radius 

Portal radius 

Plasma conductivity 

Imaginary part of a 

Real part of a 

Detector response time 

Radian frequency of generator 

Cavity resonant radian frequency 

Plasma frequency 
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APPLICATION OF THE RESONANT CAVITY METHOD 
TO THE MEASUREMENT OF ELECTRON DENSITIES 

AND COLLISION FREQUENCIES 
IN THE WAKES OF HYPERVELOCITY PELLEtS 

I.     INTRODUCTION AND REQmREMENTS 

The properties of ionized wakes caused by the passage of hypervelocity 

in the laboratory by means of the two-stage light-gas gun.   A central problem i 

measurement of electron density.   This problem has been studied in connection 

erated by other means, such as electrical discharges in gases.    One of the mosf. 

techniques has proved to be the measurement of the complex input or transfer 

resonant cavity that contains the ionized gas in a high-electric-field region of 

report describes the capabilities, precautions and limitations of the cavity 

the investigation of hypervelocity wakes. 
The measurement system design must take account of four features of 

experiments which are frequently not met in other applications of the cavity 

bodies may be studied 

i this study is the 

with plasmas gen- 

satisfactory 

aÜmittance of a 

cavity.1,2   This 

technique applied to 

hypervelocity pellet 

method: 

of the 
ontrol of 

plas; 

(a) Entrance and exit ports must be provided to permit free passage 
pellet and to measure a segment of a long wake without loss of cc 
the electromagnetic environment. 

(b) The presence of the cavity structure must not be permitted to modify 
sibly the flow pattern of the wake gases or otherwise modify the • 
under measurement. 

(c) The cavity construction must be rugged enough to withstand the m 
deformations produced by shock waves and other stresses caused 
hypervelocity flight and firing of the gun. 

(d) Data presentation and recording must be accomplished on a single 
basis. 

n.    CAVITY DESIGN 

The cavity employed in recent experiments is shown schematically in Fig. 

graphically in Fig. 2.   It resonates in the TMoi0 mode.   Entry and exit ports a 

circular disk ends,  with lengths of circular tubing beyond propagation cutoff to 

of RF energy from the cavity to the region outside.    This method is suitable in 

the wake plasma, but must be reconsidered when the pellet and wake pass   " 

possible propagating mode of the coaxial type.   This question is discussed later 

cast with heavy walls,  especially the end plates, and with ribbing as shown 

500 pounds.   Earlier designs were rejected because the phase angle of the 

did not return to its original value after the plasma cleared away.   This 

test for ruggedness. 
The cutoff tubes must be made large enough in diameter to offer a minimum 

with the flow patterns induced by the pellet flight.    Since the flow problem is 

through 

The 

constitutes 

part 

sen- 
ma 

(ichanical 
by the 

-sweep 

and photo- 

provided in the 

prevent coupling 

ihe absence of 

and create a 

The cavity is 

weight is about 

radiation 

a sensitive 

transmitted 

interference 

of the subject 
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Fig. 1.   Resonant cavity configuration. 

PELLET 

Fig. 2.   Photograph of cavity. 
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Fig. 3,   Simplified block diagram of cavity apparatus. 
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under investigation, it is difficult to estimate the extent of this interference m advance.   Feldman 

has Len resets of computations of flow fields for a similar case, which show  ha the wake 
reaches sonic values at a distance of approximately 50 pellet radii behind the pellet.   Beyond tins 

ejon the shock is very weak and the velocity profile is stabilized.   The shock *******£ 

peUet radii from the axis of flight, and the velocity profile decays to ambient in about 5 pellet 

radii from the axis.   Our experiments have employed J-inch-diameter pellets   and 6-mch- 

d^eteTcutoff tubes, placing the tubes at a distance of 24 pellet radii from the axis.   The inter- 

action of the flow with the cavity should therefore be small. 

m.  CAVITY INSTRUMENTATION 

The wake electron density and electron-molecule collision frequency are ^dJ-m a 

measurement of the transadmittance and a knowledge of the fixed Parameters of the cavity. 
simplified block diagram of the apparatus is shown m Fig. 3 ,   .    TM       mode by 

A CW signal from a 450-McPs signal generator excites the cavity in the TM^ mode by 
A CW signal iro r 0,mn,„ of the field is coupled out with a similar coupling 

...        „„     rpi,- tfiros are recorded photographically,   in me simultaneously on a dual-beam oscilloscope,    rhe traces are reco H       J.        f ,nMrnc5 

in Fig. 4. 

IV    CAVITY AND CIRCUIT ANALYSIS 

ternal Q's, of the two outputs and the resonant frequency of the excxted 

ditions the input admittance becomes 

Y
g = Wg 

/v. 

O; + J K       w /     eowo  /, 

E   dv a 

E E   dv a 
Q. 

(D 

to.he olto «„up« ^r.e, ^s-^-rrrrr:c»T« i**» 
unloaded Q of the cavity in the absence of plasma.  ^ .. nalized units))   j is the con- 

::r;::::.rrcc:.„., ;„ ?.... »«* v— -«. - ^ - -— 
«...  or coupUng ^  ^^^.H.*. ^Cv., tn. ^Uo«, o. Vo!,... a^ c™. 
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Fig. 4.   Detailed block diagram of cavity apparatus. 
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The waveguide characteristic admittances Ych may be defined as ratios of line integrals of the 

fields along appropriate paths in the waveguide, or simply as products of fields measured at 

reference points in the guides times the characteristic dimensions.   This arbitrariness never 

becomes a problem in the final presentation of data, since voltage ratios, current ratios and 

phase angles always turn out to be the desired quantities.   In the present case of the TM010-mode 

cavity, the constancy of the electric field along the axial coordinate of the cavity suggests refer- 

ring all impedances and voltages to the center of the cavity, as though the points at the centers 

of the end plates were terminals in the circuit.   The voltage difference across the cavity is then 

V = E 6, where E   is the field at the center of the cavity and 6 is the length of the cavity.   Volt- 

age levels in the output lines are proportional to this value.   The present definition, although 

arbitrary, has the merit of easy and plausible reference to the electric field of the cavity. 

H-»-tHt| 

-V\fr- 

TCC :c<: 
I 

GL = Gc 

1 

v0 = vq 

Gc + Gd 
n   i        ' V Gc+Gd 

Fig. 5.   Equivalent circuit of cavity (upper) and Thevenin equivalent at resonance (lower). 

The various additive terms in the admittance expression of Eq. (1) imply the upper circuit 

of Fig. 5.   The conduction currents in the plasma are accounted for by a complex admittance 

Y = G   + jB .which is connected in parallel with the intrinsic shunt admittance Yc = Gc + .iBc 

oithe cavity.   The cavity is excited by a generator represented by the constant voltage source 

V (complex amplitude) and the series impedance Rg (real for a matched generator as used in 

the experiment).    This generator excites the cavity through a coupling loop or other coupling de- 

vice, which refers the actual values of Vg and Rg to the impedance level defined at the cavity end 

plates previouslj. discussed.   The intrinsic admittance of the cavity in the absence of the plasma 

consists of a constant real part Gc,  representing the ohmic losses of the cavity, and an imaginary 

part 

B = coC T— = w  C   ( — 1 
C        wL O    C \U3n CO   / 

c '    0 ' 

(2) 

where L and C are the inductance and capacitance of the equivalent circuit and ü)O = l/JETcT 

is the resonant frequency. The detector admittance, again real for a matched detector, is Gd. 

referred to the cavity-center reference point. 
The equivalent capacitance of the cavity Cc depends on the definition of the voltage which ap- 

pears between its terminals.    The present definition,  V = Eo6,  leads directly to an expression 

for C  .    At the instant when the magnetic field,  which is in time quadrature with the electric field. 

*ni«lfl^m ,i.;^,;».;l 



is zero, the entire cavity energy is stored in the electric field.   At this instant the energy stored 

in the capacitance is U = |CcE0ö .   The energy is now computed from the electric field to de- 

termine C .   The electric field as a function of radial coordinate r for the TM010 mode is 

given by 

E = Ez = VO'T*     ' 
where E   is the electric field arapliiuHe at the center of the cavity,   p is the radius of the cavity. 

J   is the Bessel function of zero order and a = 2.405 is the first root of J (o) = 0.   The electric o o 
field is independent of the axial variable.   The total energy stored in the cavity is then 

'P 

'o 
UMl/Z^J   nVy^J^rdr 

= f£oEo2öA2<a) 
» ,  „2..2T2,„. (3, 

where numerically. 

J^C«) = 0.2695      . 

Equating this expression to the energy as given in terms of the circuit parameters, we obtain 

rJ^o) eop2 

S 6 
Using the equation for the frequency of the TM-.Q mode 

UoP 
= at ol - - (4) 

c 

we have 

/e 

io 

The cavity susceptance becomes, finally 

<*occ**a3lMi hr  • (5) 

c
        1      ö V^o ^o     w' 

(6) 

Comparison with Eq. (1) shows the equivalence between Y^J^gg anci U
0

C
C' as expressed 

in Eq. (5).   This factor also multiplies all other terms in Eq. (1).   The other circuit parameters 

are therefore identified as: 

ü)  C . 

u) C 
Gd = -|f      ' (9) 



G+JB=^ 

f    J ■ En dv Jv a 

>   f     E • Ea dv Jv a c 

(10) 

The plasma admittance is computed in terms of the plasma conductivity given (in the approx- 

imation that Vm is constant) by ' 

tr   + jo-, r    J i 
ne 1 
m   i»m + ju 

(ID 

is where e is the electron charge, n is the electron density, m is the electron mass, and ^ 

the electron-molecule coUision frequency for momentum transfer. Assuming that the electron 

density is independent of the axial coordinate z. and that the electrons are found only near the 

center of the cavity where E « Eo, and noting again that iC^fi   » i«0 Jv   E   dv' We find 

,e '(r) ZTr dr = ^ ^ 
m 

(12) 

where p   is the radius of the plasma column and N = j/6 n(r) Z*r dr is the number of electrons 

per uniUength of plasma trail.   Separating Eq. (12) into real and imaginary parts. 

G   - N el 
e ~   8   m 

m 

(13a) 

e        S   m 2  j.     2 
m 

(13b) 

The plasma is characterized by two parameters,   N and V.   the determination of which is 

the objective of the measurement.   The plasma admittance comprises a real and an imaginary 

part   both of which can be measured, and which are given by Eqs. (13a) and (13b).   These equa- 

tions can be solved simultaneously for N and V using experimental values of Ge and Be.    In the 

experimental situation, however,  it is convenient to deal directly with the change of amplitude of 
the output voltage and the shift of its phase.   We therefore determine first the expressions for 

G   and B   in terms of the output amplitude and phase changes, and then solve for N and V. 
6   The lower circuit of Fig. 5 gives the Thevenin equivalent of the upper circuit when the gen- 

erator frequency is adjusted to the   undisturbed resonant frequency of the cavity.   The generator 
emf is V   = V(Y   = 0), and the series admittance is GL = Gc + Gd + l/Rg, which is the total con- 

ductive load of the cavity.    The series admittance may be expressed in terms of the loaded Q as 

r    -    0   c 
GL-   Qr 

(14) 

The ratio of the output voltage V to its value Vo when Ye = 0 is 

V. 

1/Ye 

(1/Ye) + (1/GL) 

GT 

GL + Ge+jBe 

(15) 

:   •.-. ■■ ■■    1 
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The magnitude of this ratio, one of the measured quantities, is given by either of 

S = 
o 

G 

B, sin 6 

L>       e 
cose 

where 9 is the change of phase of V from that of V . givun by 

tan e = - 

Using Eqs. (5) and (14), 

S =  

GL+Ge 

(16a) 

(16b) 

(17) 

cos 6 

iraJ. {a) 

"^TM^o 
sin© 

Solving for G„ and B , 

Ge = 

jraJj (a) 

QT « 
o ,cos e    .. 

(—ö 1) 

^ {a) a    /eo sine B«=—^r^>o 

(18a) 

(18b) 

These equations provide the circuit representations of the plasma Ge and Be in terms of the 

observable quantities S and e.    These values are now equated to the equivalent quantities in 

Eqs. (13a) and (13b) given in terms of the plasma parameters.   The resulting pair of equations 

are solved for the plasma parameters in terms of the measured quantities S and e,   with the 

following result: 

cos e — S 
sine 

u. e ^L ro 

sine 

(19) 

(20) 

Numerically, aZJ^{a) (irm/^e2) = 1.383 x lO^m'1 or 1.383 X 1012cm"1.    (As a matter of curi- 

osity, this coefficient may be compared with the reciprocal of the classical electron radius 

r   = n e2/4Tm.)   It is noted that the electron line density N,   in electrons per unit length,  is given 

by this technique,  with no information on the radial distribution of electrons or trail diameter. 

If the trail diameter exceeds the diameter of the region of nearly constant electric field, the pro- 

cedure yields the value of 

'P. i: e E2(r) n(r) Zirr dr 
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V.    UMITATIONS AND PRECAUTIONS 

A.   Breakdown of Perturbation Theory 

The equivalent circuit of the cavity and conducting plasma (Fig. 5) and the expression for the 

plasma admittance (Eq. (12)J are obtained under the small perturbation assumption that the cavity 

electric field is not greatly disturbed by the presence of the conducting plasma.   Two criteria 

may be applied to determine whether this assumption is valid.   First, the cavity must not be per- 

turbed over-all to the point where its resonant frequency is changed a large fraction of its un- 

disturbed value, or its Q is reduced to the neighborhood of unity.   These two restrictions may be 

combined into the condition that 

k-'k-n «i (21) 

where Q   is the contribution to the cavity Q for which the plasma is responsible, «o is the reso- 

nant frequency as perturbed by the electrons and w is the original resonant frequency, equal to 

the applied frequency.   This condition may be expressed in terms of the equivalent circuit param- 

eters defined in Eqs. (5) and (12): 

|Yel«WoCc     , 

which reduces to 

N « a
Zjha) -^ 71 + V/' (22) 

This quantity has already been seen in Eq. (20).   It is concluded that the cavity is not seriously 

perturbed until the line density of electrons approaches the order of 10     cm" , or higher if 

v     exceeds a), m 
In applying perturbation theory to cavities,  it is necessary to consider not only the over-all 

perturbation of the cavity fields, but also the local perturbation.   For example, a small, per- 

fectly conducting object changes the cavity frequency only a slight amount, but causes a very 

large local perturbation in the vicinity of the object.   A sufficient,  but unduly restrictive,  condi- 

tion for negligible local perturbation is that the effective dielectric coefficient of the plasma be 

near unity.    The effective dielectric coefficient of a medium of conductivity «r is given by 

K = 1   + T jwe 
(23) 

The conductivity for a plasma is given by Eq. (11).    The near-unity condition on dielectric coeffi- 

cient is equivalent to 

« 1      , (24) 
we. 

or,  using Eq. (11), 

« 
me to 

; 
i   ,      2/2 

m' 
(25) 
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In the coUisionless case vm = 0, this expression reduces to the familiar plasma frequency con- 
m 

dition 

2      ne2  <<A (26) 0)     = ——  « 1 
o 

Condition (24) can be relaxed for the wake instrumentation configuration of cavity fields. 

The electric field of the cavity is parallel to the wake axis, so that the field inside the wake re^ 
gion is continuous with the outside field.   Condition (24) restricts the conduction current density 

of the electrons. J = <7E, to values small compared with the Maxwellian displacement current 

density Jri = jw£ E.   However, even when the conduction current becomes larger than the dis- 
placement current, the radius of the plasma may be so small that the penetration of the electric 

field is complete and no significant attenuation or phase shift occurs over the short distance. 

This statement holds if the propagation factor exp[ju<«/7/c] pe is near unity, or 

l^fpj«!      • 
. 6,7 

Using Eqs. (23) and (11),  and taking |ff| » w^, this condition reduces to 

(27) 

N ^««^Jl+^/c2     . (28) 
,,   ,:< ■■•.    i i   '  '' , / '■■• 

*oe 

which is substantially the same as the large complex Q condition (22).   Condition (28). along with 

the parallel E-field configuration,  is a sufficient condition for small perturbation. 
That (28) is less restrictive than (25) may be seen by finding the frequency at which they 

become equal: 

2 

or 

u. e *o 

"Pe _ , (29a) 
' —   1 , 

,       27rc      7Tn (29b) 

wher6 X is the free-space wavelength.    This result shows that,  for plasma radii much smaller 

than X/2., which is the case when a plasma is contained within a low mode cavity,  condition (28) 

is less restrictive than condition (25). 
Strictly speaking,  condition (25) is not correct anyway.   A high mode cavity, whose dimen- 

sions are large compared with the free-space wavelength, might fulfill condition (25) but not 

(28)     The conduction current would then be small in comparison with the displacement current, 

but the extent of space including the plasma would be so large that the cumulative effect of the 

locally small conduction current on the amplitude or phase of the propagating wave would in- 

validate the perturbation assumption. 

10 
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I 
A final comment on the use of perturbation theory concerns extension of the theory to a 

higher order of perturbation or recourse to a more exact analysis.   Although a modest improve- 

ment in the range of usefulness of the technique might be achieved in this way, a basic limit lies 

in the loss of sensitivity of the method when the plasma is so dense that the field is either re- 

flected or absorbed, and therefore does not penetrate at all.   This limit does not lie far beyond 

the breakdown point of perturbation theory.   A more accurate analysis of a low pressure plasma, 

with few collisions, and a small electron density gradient, might permit the plasma to be probed 

more extensively, but the cavity technique is probably not the best method for doing so. 

B.   End Effects 
The foregoing analysis of the circuit representation of the plasma in the cavity assumed an 

axially homogeneous plasma aligned with the electric field.   This assumption does not hold near 

the cavity ends, where the cutoff portals distort, the field to provide a radial component of field. 

A simple and rough estimate of this end effect may be made by using the circuit approximation 

of Fig. 6.   A short length of coaxial capacitance Cs is regarded to be connected in series with the 

$ Fig. 6.   Circuit with end capacitance. 
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The inner and outer radii of the coaxial capacitance are the 

respectively.   The length of the capacitance is 

more difficult to identify, but is designated by 6g.   The series value of two such capacitances, 

one at each end,  is given by 

electron admittance Ye at each end 

plasma radius p   and the cutoff portal radius p 

ire   Ö o s 
2        ln(pp/pe)      • 

The admittance of these capacitances in series with the plasma admittance Ye is given by 

(30) 

1 
Y' jw(Cs/2) 

or 

Ye =  1 + (2Y   AuC  ) 
(31) 

It is noted that,  when collisions are absent, Ye is a negative imaginary number and Eq. (31) has 

a resonant denominator.   Collisions modify the resonance in a conventional way. 

The condition for small end effects is that the second term in the denominator of (31) be 

small in magnitude compared with unity.    This condition is equivalent to saying that the series 

impedance of the capacitances be small compared with the plasma impedance.   Using Eq. (30) to 

compute the former and Eq. (12) to compute the latter, the condition becomes 
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7       "^"s (32) *m     I T^- 

^J        m        c2ln(pp/pe) 

This expression differs from (28) by the factor a,2«8/c2  ln(pp/pe).   The logarithm is not much 

greater than unity, even for fairly large radius ratios.   If 6 and 8S are of the order of \/2n. the 

entire factor is also of the order of unity.   Cavity dimensions are usually taken of this order 
The new condition is therefore substantially the same as the previous conditions (22) and (28). If 

the cavity is made short (pancake shaped) the series-capacitance limitation is more stringent. 

'  The series-capacitance effect may be estimated hi a different manner, which affords a de- 

ferent point of view as well as another approach to selecting the dimensions to put into the ex- 

pression (32).   This method considers the part of the plasma which is exposed to the electric 

field of the cavity as a prolate spheroid with major semiaxis fl/2 and minor semiaxis pe.   H con- 
dition (28) holds, the region containing the plasma may be treated quasistatically; that is, the 

electrostatic depolarizing effect of the body shape may be used to compute the field inside the 

plasma in terms of the field outside (identified with the "field at infinity- in the corresponding 

electrostatic problem).   The spheroid is therefore characterized by a depolarizing factor / 

u 8 given by 

i=i^!(_2£+lnf±f)      . (33) 

where C is the eccentricity given by 

Thc «.W E, inside .he pU»» 1. given in .em* ot .he ex.ern.1 Held E0 end .he e^iv.len. polar- 

ization 

p = :eoJa*0
Ei 

as 

V = E - i :r- = E - o        eo        o 

Solving for Ej, 

Eo 
Ei " 1 +i(cr/jwe  ) 

E. 
i 

(35) 

We now return to Eq. (10), and use the modified internal field of Eq. (35) to compute the cur- 

rent density J.   The denominator is treated as before,  since the integral here contains contn- 

:1ns toThe integrand from all regions of the cavity,  in contrast with the situation ui the in- 

tegral of the numerator where the integrand is zero except where the conducting material is 

present to alter the field.    A. before,  C,/^ ^dv = i/E^2, but now J = .E..   Thus 

Ye (36) yi  = ■—=r     . 
e      1 + (iöY /iira)e0pe) 
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where Y   = rp V«-   In this expression the integration is simplified by the assumption that the 

conductivity iseconstant throughout the plasma to the radius p&.   The shape is assumed cylindri- 

cal in the integration, even though it was taken to be spheroidal to obtain I.   It is noted that, in 

the coUisionless case. Eq. (36) has a resonant denominator, as was true of Eq. (31). 
Equation (36) is now compared with Eq. (31) to obtain the equivalent value of Cs: 

C  =   ^^L- M 

Substituting the value of i from the leading term in the expansion of Eq. (33) in the smaU quan- 

tity pe/« 

4p e    ln-i- 

we obtain 

Cs= 2 ln(a/£Pe) 
(37) 

where e = 2.718... is the Naperian logarithm base. 
Equation (37) may be compared with Eq. (30).   The length ^ of the coaxial condenser appears 

here as one-fourth of the cavity length, and there is a minor difference in the logarithmic term. 

The coaxial condenser envisions different field details from those of the spheroid   and neither is 

an exact description of the real fields.   However, the conclusion in the paragraph following 

Eq. (32) is supported by either approach, so that the concept of a series-capacitance effect and 

the order of magnitude of the upper limit of electron density imposed by the effect are reasonably 

well established. 

C     Surface-Wave Coupling Through Portals 

The portal tubes through which the pellet passes are chosen of sufficiently small diameter 

to be well into the cutoff region, to prevent electromagnetic energy from escaping through this 

route from the cavity.   However, when the effective dielectric coefficient of the plasma is suffi- 
cient^ low, a surface-wave, or slow-wave, type of propagation can take place.    ^ los;leSS 

plasma this wave propagates at * 4 -1, being strictly confined to the surface when * »-1.   With 

reduction of K below -1, the fields penetrate further into the regions away from the surface. 

Outside the plasma this trend continues indefinitely, but inside the penetration reaches a maxi- 

nuun and then decreases.   As , approaches -, the fields inside the plasma become surface 

fields again, whereas the outside fields become identical with those of a coaxial line made of 

perfect conductors.   T^e physical basis of these surface waves lies in ^^^^ 
a medium of negative dielectric coefficient has of accumulating positive charges at the tails of 

the E-lines rather than at the heads.   These E-lines can thus leave positive surface charges, 
which they produce, on both sides of the plasma-free-space interface, and terminate on simi- 

larly produced negative charges.    The surface charge wave is peristaltic. 
sLct such a propagating mode can exist, the effectiveness of the -cutoff« tubes is quesfcon- 

able     In order to estimate the seriousness of this effect,  we compare twice the characteristic 
Cedance of such a wave with the impedance of the plasma.    If the former is small in comparison 
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with the latter, the impedance of the series coaxial lines cannot falsify the measured values of 

plasma impedance.   The actual impedance reflected from the coaxial line into the cavity depends 

on the impedance that the line sees on the outside, and is equal to the characteristic impedance 

only if the line is matched.   However, the order of magnitude of electron density at which this 

effect is important can at least be estimated by this comparison.   Although the analysis is not 

carried through here, the results are presented. 
Near the onset of propagation, where K is equal to or slightly less than -1, the fields are 

closely confined to the region near the surface.    The electric and magnetic fields are disposed 

in the same directions as in the usual coaxial TEM mode.   The current in the line is obtained by 

a line integral of the magnetic field around the plasma inner conductor at the interface.   Since 

this integral is taken at the surface where the magnetic field is nonvatiishing,  it is of normal size. 

The potential difference, on the other hand, is a line integral of the electric field along a radial 

path from the interface to the outer conductor.     Since the field drops rapidly in going away from 

the surface, the potential difference is very small.   The characteristic impedance, which is the 

ratio of potential difference to current, is therefore also small. 
As the electron density is increased beyond this value, and K drops further below —1, the 

characteristic impedance rises owing to the increasing penetration of the electric field toward 

the outer conductor.   It can be shown that, in the intermediate region, where K « -1 but 

N «irm/ji e , the characteristic impedance is given approximately by 

Jch Zna e N o 
-£ (38) 

Since this value decreases with increasing N, Zch must pass through a maximum. As N goes 

beyond the value Jrm/(i e2 toward infinity, Eq. (38) no longer holds, but rather Zch levels out to 

the value for the simple coaxial line 

"ch i-   /^In^E (39) 
o        re 

The plasma impedance for the lossless case {v    = 0) is given by 

re 
J 

coma . comfi 
2    2 vo  ne e 

J (40) 
Ne 

If we require the magnitude of Z   to be large compared with twice the characteristic impedance 

as given by Eq. (38),  we obtain 

N« 
2,2 irm   w ö 

u e ro 
c2     2 ln(pp/pe) 

(41) 

Since 6  is of the order of X/Zir,  and the ln-factor cannot be greatly different from unity, the 
12       -1 

slow-wave effect begins to be a problem when N approaches 10     cm    .    However, this is just 

where Z .,  as given by Eqs. (38) and (39), agrees owing to the leveling off,  so that we could just 

as well have required that (40) be large compared with twice (39),  resulting in 

AT ^   Tm   u6 i N ^^w^? ■o 

(42) 
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If electron line densities well below 101  cm"1 are measured, little difficulty may be ex- 

pected from the pjrtal impedances.   However, another possible effect of the slow-wave propaga- 

tion may occur within the cavity itself.   The wave velocity Is zero at K = -1. and rises as K de- 
creases until, at -«, it reaches the free-space propagation velocity c.   It is t'.iis behavior which 

leads to the term "slow wave."   One can therefore visualize an entire series of new ctvity modes 

using the slow-wave propagation mechanism.   If one of these modes coincides in frequency with 

the applied frequency (that of the undisturbed TM^10 mode). It will also be excited.   The degree of 

excitation will depend on the relative field configurations of the two modes.  It seems reasonable 

that the coupling will be related to the common impedances, so tliat the criterion (42) for weak 

external coupling through the portal tube must be similar to the criterion for excitation of slow- 

wave resonances.   If this surmise is correct, similar electron densities are required. 

D.   Electron Heating by the RF Field and Measurement Sensitivity 

If the components of the measurement system are well engineered for biability and isolation 

from external disturbance, the ultimate sensitivity of the measurement of electron density and 

coUision frequency is determined by the comparison between the front-end noise of the amplitude 

and phase detectors and the output signal of the cavity.   The cavity output signal can always be 

increased by an increase in the signal generator power.   The limitation becomes the maximum 

power that can be absorbed by the cavity without exceeding the permissible disturbance to the 

electron energy distribution function.   Heating of the electrons by the cavity fields is therefore 

of interest in determining the sensitivity and accuracy of the experiment. 
The power per unit volume delivered to the electrons by the cavity field is given by 

p = 4- "X Z    r   o 

2     „2 ne "wE«  m   o 

2m(v    + u   ) 

where <T   is the real part of the complex conductivity of the plasma, given by Eq. (11).    This 

value is proportional to the electron density and to the collision frequency;  therefore, the energy 

delivered to each electron at each collision is 

Au,. ^o 

Zm{vZ + w2) 1 m 

The energy transfer from the field to the electron is associated with the collision process be- 

cause the in-phase component of the velocity of the electron is generated only in the collisional 

deflection.   In the absence of collisions, the velocity is in time-quadrature to the electric field. 

The energy lost in an elastic collision between an electron of mass m and a molecule of 

mass M due to elastic recoil,  on the average, is given by  . 

2m   . 
Auc = -   M" Au      ' 

where Au is the amount by which the electron kinetic energy exceeds that of the molecule.   Di- 

atomic molecules are excited into rotational and vibrational states even at low energies,  so that 
the mass ratio 2m/M is replaced by a larger factor g which is best determined experimentally. 

Huxley and Zaazou report g = 1.3 X 10'3 for air in the energy range of 0.2 to 0.8 ev (see Ref. 10). 

The steady-state increment of electron energy above the ambient thermal energy is given by 
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or 

AuE + Auc = 0 

n 
Au =  5 5-     . 

2mg(i£ + u) 

The maximum field E   which may be applied if Au is the maximum permissible increment of 

electron energy is therefore 

/ 

/2mgAu(v     +0) ) v /—f— • <«) 
This result may be expressed in terms of the maximum incident power from the signal 

generator 

pi = wf =T-rfuocc   • 
g QL 

This expression holds only when electrons are sparse or absent.   Using V = E fl, solving for 

E , equating to (43),  and finally solving for P., 

1-3-2-^(-»-'m 
P.^^J^g^-l-     l+-^l^i^cAu     . (44) 

e 
o 

Typical numerical values are:   g = 1.3 X 10" , fi/p = 1,  Q   = 5000, Q,  = 2500,  vm/(o = 1, 

Au = 0.1 X(3/2) kT, k = 1.38 X 10"23 joule/degree, T = 300oK.   The maximum incident power for 
_5 

these values is P. = 3.2X10    watt, or 3 211 watts.   More power may be applied when the electron 

density is high, but variation of signal generator power for optimum conditions at each electron 

density is very inconvenient.   However, the power level computed above is always safe. 

We next consider the minimum electron density which can be detected subject to the maxi- 

mum excitation field as computed abovö.   Minimum electron density implies a nearly plasma- 

free cavity (Y   small).   The limit is regarded as set by detector noise with a noise temperature 

T,.   In practice, the detector calibration is reliable only if the impedance connected to the de- 

tector input is constant, requiring a device such as a ferrite isolator between the cavity output 

and the receiver.   With an isolator, the cavity presents a matched input impedance to the de- 

tector of R, = l/G, irrespective of the plasma density in the cavity or of the coupling conditions. 

For Y   small,  an rms noise voltage 

/4kT, 

is therefore indicated by the detector, where r is its response time.   The signal voltage is 

given by Eq. (15),  which for |Ye| « GL,  or,  using Eqs. (12),   (4),   (5) and (14), 
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V^o^-üf) (47) 

mum detectable electron density.   Using Eq. (12) for Ye, 

The magnitude of the difference voltage V |Ye|/GL is compared with the noise voltage for mini- 

:ty.   Using Eq.(l 

i     gs 
-—2= 7 v G,    ö  m J m 

determines the minimum detectable N.   Substituting Eq. (43) for V0/fi = Eo. using Eqs. (9). (14) 

and (5). and solving for N, 

N Uoijfia) % a kTd   irm 
^77 gtM u e ■o 

2   CT 
(48) 

Since V   - V is proportional to N.   this expression also represents the error in the measurement 

of N at any N consistent with (46).   A typical set of numerical values is:   QJ/QL ~ ^\   '   , 

p/6 = 1, T. = 900'K. Au/k = 30*K. g = 1.3 X 10'3,  T = 10"5sec(  giving Nmin 
3X10  cm 

At the opposite limiting case of | Y »GL, or 

N» 
Qi 

aZjha)- irm 
2 

^oe 

1 + 
m 
2 

the plasma becomes a heavy load on the cavity and the output voltage drops to a low value 

V ^ VoGl/Ye 

(49) 

(50) 

It is of interest to see at what electron density the output voltage drops into the noise. This con- 

dition does not define a real upper limit to measurable electron density, since the signal genera- 

tor power may be increased to compensate for the drop in electric field in the plasma without 

incurring an increase of electron energy beyond the set value of Au. ^ecifically, the generator 

may be turned up until the new value of V is equal to the old limitation on Vo defined by Eq. (43). 

The ratio of permitted voltage increase, by Eq. (50),  is 

|Y 1 P QT N 
2T2 a Ji{a) Wnoe    Ji ~ "2/^ 

which is of the order of QT  for N » 7rm/ji e2, the order of the maximum N that can be measured 
\ j o 

without invalidating the perturbation assumptions.   For QL of the order of 2500, the 32-|xw inci- 

dent power previously computed may be increased to 200 watts.   However, it is inconvenient to 

design the components of the system to ctenge characteristics with changes in electron density. 

It is therefore of interest to determine the maximum electron density which may be measured at 

a signal generator setting which does nod unduly disturb the electron energy even when the elec- 

tron density is low.   This limit is determined by equating the magnitude of V in Eq. (50) to the 

noise voltage in Eq. (45).   Expressing the G's in terms of the Q's and manipulating as in the 

computation of the low N limit. 
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N ma>: <*J% 
(51) 

= exKr^cm   . 
Tv^lcal numerical values of Q,^ - 106. and others as given above, lead to Nmax 

«h as this value .s beyo.S^e small perturbation limit, it does not appear necessary to xn- 

crease the signal generator power beyond the safe value in the absence of electrons. 
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